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Abstract

In multi-task learning (MTL), multiple related tasks
are learned jointly by sharing information across them.
Many MTL algorithms have been proposed to learn
the underlying task groups. However, those methods
are limited to learn the task groups at only a single
level, which may be not sufficient to model the com-
plex structure among tasks in many real-world appli-
cations. In this paper, we propose a Multi-Level Task
Grouping (MeTaG) method to learn the multi-level
grouping structure instead of only one level among
tasks. Specifically, by assuming the number of levels to
be H , we decompose the parameter matrix into a sum
of H component matrices, each of which is regularized
with a `2 norm on the pairwise difference among pa-
rameters of all the tasks to construct level-specific task
groups. For optimization, we employ the smoothing
proximal gradient method to efficiently solve the objec-
tive function of the MeTaG model. Moreover, we pro-
vide theoretical analysis to show that under certain con-
ditions the MeTaG model can recover the true param-
eter matrix and the true task groups in each level with
high probability. We experiment our approach on both
synthetic and real-world datasets, showing competitive
performance over state-of-the-art MTL methods.

Introduction
Multi-task learning (MTL) (Caruana 1997) seeks to improve
the generalization performance of multiple learning tasks by
sharing common information among them. MTL has gained
its popularity among a wide range of applications including
image annotation (Fan, Gao, and Luo 2008), speech recogni-
tion (Parameswaran and Weinberger 2010), disease progres-
sion predication (Zhou et al. 2011) and so on.

Many MTL algorithms have been proposed to learn task
structure and model parameters from data simultaneously.
For example, some works aim to identify the existent of
the outlier tasks (Chen, Zhou, and Ye 2011; Gong, Ye, and
Zhang 2012), some assume that the model parameters of
all the tasks lies in a low dimensional subspace (Ando and
Zhang 2005; Chen, Liu, and Ye 2010; Chen, Zhou, and Ye
2011), some works learn the task relations (Zhang, Yeung,
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and Xu 2010; Zhang and Schneider 2010; Zhang and Ye-
ung 2010; Zhang 2013; Zhang and Yeung 2014), and some
assume the task structure is hierarchical (Daumé III 2009;
Jalali et al. 2010; Görnitz et al. 2011; Lozano and Swirszcz
2012; Zweig and Weinshall 2013). Among them, some in-
teresting MTL algorithms assume that the tasks form sever-
al clusters and aim to learn the underlying task groups. For
example, Jacob et al. (2008) design a regularizer based on
the k-means clustering algorithm to directly learn the task
clusters with the number of cluster predefined, Kang et al.
(2011) identify the task groups by learning the cluster as-
signments based on relaxed integer programming, Kumar
and Daume III (2012) generalize the non-overlapping clus-
ter assignments for tasks to overlapping ones, and Zhong
and Kwok (2012) focus on learning feature-level task groups
where different features in one task can have different task
groups.

However, all the existing task grouping techniques are
limited to learn the task groups at only a single level based
on the model parameters but in real-world applications, the
structure between tasks can be so complex that the single-
level task grouping is not enough to model it. For example,
to find the cross-talks from gene expressions, the correlated
genes are often interacted with multi-level clusters as stud-
ied in (Kim and Xing 2010; Han et al. 2014). However, we
are not aware of any work which can learn the multi-level
task clusters from data automatically.

In this paper, we want to fill this gap by learning multi-
level task groups as well as the parameters learning to model
the complex task relations. Specifically, we propose a Multi-
Level Task Grouping (MeTaG) method which decomposes
the parameter matrix (i.e., a matrix containing the model pa-
rameters of all the tasks) into a sum of H component matri-
ces with each component matrix corresponding to one level.
In order to learn the task groups in each level, we impose a `2
norm on the pairwise difference among the column vectors
(corresponding to tasks) of each component matrix to con-
struct level-specific task groups without the need to prede-
fine the number of the groups. The proposed objective func-
tion is convex but non-smooth, and the smoothing proximal
gradient method (Chen et al. 2011) is employed to seek the
global optimum efficiently. Moreover, we provide theoreti-
cal analysis for the proposed MeTaG method by proving a
error bound between the estimation by our MeTaG method



and the ground truth. We further show that with an assump-
tion on the noise for the true grouping pattern, our MeTaG
method can recover the the true task groups in each level
with high probability. For empirical studies, we compare our
MeTaG method with some state-of-the-art MTL methods on
both synthetic and real datasets, and the experimental results
demonstrate that the proposed MeTaG method is competi-
tive compared with existing MTL methods.

Notations: Lower-case letters are used for scalars, bold-
face, lower-case letters refer to vectors, and bold-face and
capital letters are for matrices. A vector x with length m is
denoted by x ∈ Rm and similarly a matrix X with size d×m
is represented as X ∈ Rd×m. For a matrix X, its jth row,
ith column, and (j, i)th element are represented as xj , xi,
and xji respectively. For any vector x, ‖x‖q represents its
`q norm. For any matrix X, ‖X‖p,q and ‖X‖F represent its
`p,q norm and Frobenius norm separately. 〈X,Y〉 denotes
the inner product of any matrices (or vectors) X and Y. Nm
represents the set of integers {1, · · · ,m}. N (µ, σ2) repre-
sents a normal distribution with mean µ and variance σ2.

The MeTaG Model
Suppose we have m learning tasks and the feature dimen-
sionality is d. The training data for the ith task is denoted
by (Xi,yi), where Xi ∈ Rni×d is the data matrix with ni
training samples stored in the rows, and yi ∈ Rni is a vec-
tor of class labels for the ni training samples in Xi. If the
values in yi are continuous, the ith task is a regression prob-
lem and otherwise a classification problem. Each column in
Xi (i ∈ Nm) corresponding to one feature is assumed to be
normalized with zero mean and unit variance:

ni∑
k=1

x
(i)
kj = 0,

ni∑
k=1

(
x
(i)
kj

)2
= 1, ∀j ∈ Nd, i ∈ Nm, (1)

where x(i)kj is the (k, j)th element in matrix Xi. The linear
function for the ith task is defined as µi(x) = wT

i x, i ∈
Nm, where an offset is assumed to be absorbed into wi. De-
fine W = [w1, · · · ,wm] ∈ Rd×m as the parameter matrix.

Since we aim to learn multi-level task groups, by assum-
ing that there are H levels where H is a user-defined param-
eter, we decompose the parameter matrix W into the sum
of H component matrices each of which is to learn the task
groups in a level. Specifically, the parameter matrix W is
decomposed as

W =

H∑
h=1

Wh. (2)

In Eq. (2), Wh = [wh,1, · · · ,wh,m] ∈ Rd×m is the com-
ponent matrix corresponding to the hth level and wh,i is the
parameter for the ith task in the hth level. Then we formulate
the objective function of the MeTaG method as

min
W

1

m

m∑
i=1

1

ni
‖yi −Xi

H∑
h=1

wh,i‖22 +
H∑
h=1

λh

m∑
i<j

‖wh,i −wh,j‖2,

(3)

where λh’s are positive regularization parameters. The first
term in problem (3) measures the averaged square loss on the
training data. By denoting the second term in problem (3)

by Ω(W), we observe that Ω(W) imposes a `2 norm on the
pairwise difference among the column vectors in Wh, which
encourages each pair of columns wh,i and wh,j in Wh to be
identical. If this happens, then the ith and jth tasks belong
to a task group in the hth level. λh controls the strength of
task grouping at the hth level, and a larger λh is likely to
lead to smaller number of task groups in the hth level. When
λh →∞, there will be only one task group with all identical
columns in Wh. By assuming a descending order for the
numbers of task groups from the Hth level to the first one,
we set λh = λh−1/φ for h ≥ 2 with constant φ > 1.

It is worth mentioning that Ω(W) differs from the fused
lasso regularizer (FLR) (Tibshirani et al. 2005) and its vari-
ant, generalized fused lasso regularizer (GFLR) (Friedman
et al. 2007). The FLR and GFLR enable to group data fea-
tures in terms of scalars, while Ω(W) is for task grouping in
terms of column vectors. Therefore, Ω(W) can be viewed as
a generalization of the FLR and GFLR. Note that solving an
optimization problem regularized by Ω(W) is more chal-
lenged than that with the FLR and GFLR. With the same
reason, Ω(W) differs from the feature-level task grouping
regularizer in (Zhong and Kwok 2012).

Problem (3) is not easy to solve due to the non-
smoothness of Ω(W). In the next section, we show how to
solve problem (3) efficiently.

Optimization Procedure
Both the square loss and the regularizer Ω(W) are convex
with respect to W, making problem (3) convex. Since learn-
ing all levels simultaneously involves a large number of pa-
rameters, we propose to decompose problem (3) into several
subproblems corresponding to the levels. We then develop
a bottom-up iterative scheme, an instance of the coordinate
descent method, where the subproblem corresponding to the
hth level in the (k + 1)th iteration seeks for Wk+1

h by solv-
ing the following problem as

min
Wh

m∑
i=1

1

mni
‖ỹi −Xiwh,i‖22 + λh

m∑
i<j

‖wh,i −wh,j‖2, (4)

with ỹi = yi − Xi

(∑
h′<h wk+1

h′,i +
∑
h′′>h wk

h′′,i

)
de-

fined based on the parameters of the other levels from their
last updates. The bottom-up iterative scheme is shown in
Algorithm 1. Since the second term in problem (4) is non-
smooth, we employ the smoothing proximal gradient (SPG)
method (Chen et al. 2011) to solve problem (4). The problem
solved by the SPG method takes the form

min
Z
f(W) + r(Z), (5)

where f(·) is convex and Lipschitz continuous, and r(·) is
convex but non-smooth.

In order to employ the SPG method, we use f(·) and r(·)
to represent the first and the second terms in problem (4)
respectively. Then we can rewrite r(·) as

r(Wh) = λh

m∑
i<j

‖wh,i −wh,j‖2 = ‖CWT
h ‖1,2, (6)

where C ∈ R
m(m−1)

2 ×m is a sparse matrix with each row
having only two non-zero entries λh and −λh in two cor-
responding positions. Therefore, the storage requirement of



Algorithm 1 The Bottom-Up Iterative Scheme for Problem (3).
Input: X, Y;
Output: W;
1: Initialize k = 0, W0

1 = · · · = W0
H = 0;

2: repeat
3: for h = 1, · · · , H do
4: Solve problem (4);
5: end for
6: k := k + 1;
7: until Some convergence criterion is satisfied;

C is very small. Based on the definition of the dual norm,
r(Wh) can be reformulated as

r(Wh) = max
A∈Q
〈CWT

h ,A〉, (7)

where A =
(
α1, · · · ,αm(m−1)/2

)T
is the auxiliary matrix

variable, αi is a vector of auxiliary variables corresponding
to the ith row of CWT

h , and Q = {A|‖αi‖2 ≤ 1,∀i ∈
Nm(m−1)/2} is the domain of A. Then the smooth approxi-
mation of Eq. (7) is given by

gµ(Wh) = max
A∈Q
〈CWT

h ,A〉 − µd(A), (8)

where d(A) = 1
2‖A‖

2
F . According to (Chen et al. 2011),

problem (8) is convex and smooth with gradient∇gµ(W) =
(A∗)TC, where A∗ is the optimal solution to problem
(8). The computation of A∗ is depicted in the following
proposition.

Proposition 1 By denoting by A∗ =
(
α∗1, · · · ,α∗m(m−1)/2

)T
the optimal solution to problem (8), for any i ∈ N(m−1)m/2,
we have

α∗i = S

([
CWT

h

]i
/µ

)
, (9)

where [M]i denotes the ith row of a matrix M and S(·) is
the projection operator to project vector u on the `2 ball as

S(u) =

{
u
‖u‖2

, ‖u‖2 > 1,

u, ‖u‖2 ≤ 1.

Instead of directly solving problem (4), we solve its
smooth approximation as

min
Wh

f̃(Wh) = f(Wh) + gµ(Wh). (11)

The gradient of f̃(Wh) w.r.t. Wh can be computed as
∇Wh f̃(Wh) = ∇Whf(Wh) + (A∗)TC. (12)

By using the square loss in problem (4), the ith column of
∇Wh

f(Wh) can be easily obtained as 2
mni

XT
i (Xiwh,i −

yi). Moreover, it is easy to prove that f̃(Wh) is L-Lipschitz
continuous where L can be determined by numerical ap-
proaches (Chen et al. 2011). The whole SPG algorithm to
solve problem (11) is depicted in Algorithm 2, where prob-
lem (10) has a closed-form solution as W

(t+1)
h = Ŵ

(t)
h −

1
L∇f̃(Ŵ

(t)
h ). Let D = maxA∈Q d(A) and W∗

h be the op-
timal solution of Eq. (4). If the desired accuracy is ε, i.e.,
|f̃(W

(t)
h ) − f̃(W∗

h)| ≤ ε, according to (Chen et al. 2011),
Algorithm 2 needsO(

√
2D/ε) iterations to converge. More-

over, in our experiments, we find that Algorithm 1 needs
very few iterations to converge, making it very efficient.

Algorithm 2 SPG algorithm for solving problem (11).

Input: X, Ỹ, Ŵ(0), µ, h, λh;
Output: Wh;
1: Initialize t = 0 and τ0 = 1;
2: repeat
3: Compute∇f̃(Ŵ(t)

h ) as in Eq. (12);
4: Solve the proximal step:

W
(t+1)
h = argmin

Wh

f̃(Ŵ
(t)
h ) + 〈Wh − Ŵ

(t)
h ,∇f̃(Ŵ(t)

h )〉

+
L

2
‖Wh − Ŵ

(t)
h ‖

2
F . (10)

5: τt+1 = 2
t+3

;

6: Ŵ
(t+1)
h = W

(t+1)
h + 1−τt

τt
τt+1(W

(t+1)
h − Ŵ

(t)
h );

7: t := t+ 1;
8: until Some convergence criterion is satisfied;

Theoretical Analysis
In this section, we provide theoretical analysis for the pro-
posed MeTaG model. For notational simplicity, we assume
that the numbers of training samples for all the tasks are the
same and denote it by n. The general case that different tasks
have different numbers of training samples can be similarly
analyzed. We assume that the true relation between the data
sample and its class label is a linear function plus a Gaussian
noise, which is defined as

yji =
(
x
(i)
j

)T
w∗i + εji, i ∈ Nm, j ∈ Nn, (13)

where yji is the jth element in yi, W∗ = [w∗1, . . . ,w
∗
m]

is the true parameter matrix, εji is a Gaussian noise, and
W∗ can be decomposed into the sum of H true component
matrix W∗

1, . . . ,W
∗
H as W∗ =

∑H
h=1 W∗

h. Each noise εji
follows a normal distribution, i.e., εji ∼ N (0, σ2), and all
the noises are assumed to be independent of each other. We
define f∗i = Xiw

∗
i and yi = f∗i + εi for i ∈ Nm, where

εi = [ε1i, . . . , εni]
T . Let X ∈ Rdm×mn be a block diagonal

matrix with XT
i ∈ Rd×n(i ∈ Nm) as the ith block. We de-

fine a vectorization operator vec(·) over an arbitrary matrix
P ∈ Rd×m as vec(P) = [pT1 , · · · ,pTm]T where pi is the ith
column of P. Let F∗ = [f∗1 , . . . , f

∗
m] ∈ Rn×m.

For any matrix Q ∈ Rd×m, we define E(Q) =
{(i, j)|qi 6= qj , i ∈ Nm, j ∈ Nm} and its complement
Ec(Q) = {(i, j)|qi = qj , i ∈ Nm, j ∈ Nm, i 6= j} as its
true column grouping pattern, where qi is the ith column
of Q. For any matrix Q ∈ Rd×m, since each pair (i, j)

corresponds to one row in CQT ∈ R
m(m−1)

2 ×d, which is
qTi − qTj , with C defined in Eq. (6), the projections of the

rows in CQT on the set E(Q), denoted by
(
CQT

)E(Q)
,

consist of the rows with non-zero `2 norms in CQT , and
similarly the projections of the rows in CQT on set Ec(Q),
denoted by

(
CQT

)Ec(Q)
, are the zero rows in CWT

h . We
define D(Q) as the index set of distinct non-zero column
vectors in Q, i.e. for any i, j ∈ D(Q), qi 6= qj . Denote
QD(Q) as the projection of the columns of Q on set D(Q).
Let Dc(Q) be the complement of D(Q). Now, in order to
analyze our method, we need the following assumption.



Assumption 1 Let Ŵ =
∑H
h=1 Ŵh be an optimal solution

of Eq. (3). For any matrix W =
∑H
h=1 Wh ∈ Rd×m and

h ∈ NH , we define matrix ∆h as ∆h = Wh − Ŵh and
matrix Γh as Γh = CWT

h − CŴT
h . Let ∆ =

∑H
h=1 ∆h.

We assume that there exist positive scalar βh, and scalars
θh ≥ 1 and γh ≥ 1 such that

βh = min
∆h 6=0

‖XT vec(∆)‖2
√
mn‖∆D(Wh)

h ‖F
,

‖∆h‖F =θh‖∆D(Wh)
h ‖F , ‖Γh‖1,2 = γh‖ΓE(Wh)

h ‖1,2.
Assumption 1 refers to the restricted eigenvalue assumption
as introduced in (Lounici et al. 2009). Similar assumptions
are commonly used in the MTL literature, e.g., (Chen, Zhou,
and Ye 2011; Gong, Ye, and Zhang 2012). Note that θh = 1
leads to γh = 1 and vice versa. Moreover, θh = 1 if and on-
ly if ∆

Dc(Wh)
h = 0 or Dc(Wh) = ∅ which implies that all

tasks differ from each other. Now, we present important the-
oretical results for MeTaG model in the following theorem.

Theorem 1 Let Ŵ =
∑H
h=1 Ŵh be an optimal solution

of problem (3). If the regularization parameters λh for any
h ∈ NH satisfies 1

λh ≥
2σ

m(m− 1)n

√
m+

δ

d
, (14)

then under Assumption 1, the following results hold with
probability of at least 1− exp(− 1

2 (δ − dm log(1 + δ
dm ))):

‖XT vec(Ŵ)− vec(F∗)‖22 ≤ m(m− 1)2ndH2, (15)

‖Ŵh −W∗
h‖F ≤

θh(m− 1)
√
dH

βh
, (16)

‖CŴT
h −C(W∗

h)
T ‖1,2 ≤

γh(m− 1)2dH
βh

, (17)

where H =
∑H
h′=1

λh′ (θh′+1)
βh′

. In addition, if the following
condition holds for h ∈ NH :

min
(i,j)∈E(W∗

h
)

∥∥∥∥[C(W∗
h)
T
](i,j)∥∥∥∥

2

>
2dγh(m− 1)2H

βh
, (18)

where
[
C(W∗

h)T
](i,j)

denotes one row in C(W∗
h)T corre-

sponding to the pair (i, j), then with the probability of at
least 1− exp(− 1

2 (δ − dm log(1 + δ
dm ))), the following set

Êh =

{
(i, j)

∣∣∣∣∥∥∥∥(CŴh

)(i,j)∥∥∥∥
2

>
dγh(m− 1)2H

βh

}
(19)

can recover the true pattern of task groups E(W∗
h) in the

h-th level, i.e. Êh = E(W∗
h) and (Êh)c = Ec(W

∗
h).

Remark 1 Theorem 1 provides important theoretical guar-
antee for the MeTaG model. Specifically, those bounds mea-
sure how well our model can approximate the ground truth
of the component matrix W∗

h in each level as well as the
true parameter matrix W∗ =

∑H
h=1 W∗

h. Moreover, with
an assumption on the noise of the underlying grouping pat-
tern in the true component matrices in Eq. (18), the MeTaG
model can estimate the true grouping pattern for each level
with high probability based on Eq. (19).

1Since we assume a descending order for the λh’s from λ1 to λH , we only have
to make λH satisfy Eq. (14).

Remark 2 In the robust multi-task learning (rMTL) mod-
el (Gong, Ye, and Zhang 2012), the parameter matrix W
is decomposed into two components W1 and W2, and the
estimation error bound is also derived for their model. By
setting H = 2 in our MeTaG model, the error bound in Eq.
(15) is considerably better than that of their model especial-
ly when the feature dimension and number of tasks are large.

Related Work
Our work is related to some MTL approaches (Jalali et al.
2010; Zweig and Weinshall 2013), since they assume the
task relations can be represented by multiple hierarchies,
which in some aspect is a bit similar to the multi-level struc-
ture in the proposed MeTaG method. However, those works
do not learn task groups, which is one of the main concerns
in this paper.

Experiments
In this section, we conduct empirical experiments on both
synthetic and real-world problems to study the proposed
MeTaG method. Baselines used for comparison include a
wide range of competitive MTL models: the multi-task fea-
ture learning (MTFL) model (Liu, Ji, and Ye 2009), the
dirty model (DM) (Jalali et al. 2010), the Cascade model
(Zweig and Weinshall 2013), the clustered multi-task learn-
ing (CMTL) model (Jacob, Bach, and Vert 2008), the model
that learns with whom to share (Whom) (Kang, Grauman,
and Sha 2011), and the grouping and overlap MTL (GO-
MTL) model (Kumar and Daume III 2012).

Synthetic Data
We first evaluate our method on synthetic data. We sim-
ulate a multi-task regression problem with m = 32 and
d = 100. For the ith task, each column of Xi ∈ Rn×d is
generated from a normal distribution N (0, In), where In is
an n × n identity matrix. We assume there are three levels,
i.e. H = 3. For the first level, we assume all the tasks are in
the same group and randomly choose 20 rows of W∗

1 cor-
responding to features to be non-zero with value 0.8. In the
second level, we assume the first 16 tasks are in the same
group and randomly select 30 rows of W∗

2 such that the
sub-matrix defined by the 30 rows and the first 16 columns
is non-zero with all the elements equal to 0.4. For the third
level, we assume the 17th-24th tasks are in one group and
the 25th-32th tasks in another group. By randomly selecting
20 rows for the 17th-24th and 25th-32th columns in W∗

3
separately, the elements in the selected sub-matrices are set
to 0.2. Then the true parameter matrix W∗ is generated by
W∗ = W∗

1 + W∗
2 + W∗

3 . The decreasing order of the
weights over levels can simulate the gradually decreased
task sharing over levels. The response yi for the ith task is
then generated as yi = Xiw

∗
i + εi, where εi is a noise vec-

tor generated from N (0, σ2In) with σ = 2. The matrices
W∗

1 , W∗
2 , W∗

3 , and W∗ are depicted in Figures 1(a)-1(d)
where columns correspond to tasks, rows represent features,
and black entries denote zero elements.

We use the mean square error (MSE) to measure the per-
formance of the estimation, which is defined as MSE(W) =



Table 1: The performance of various methods over 10 simulations on the synthetic data in terms of mean±standard deviation.
Training size MTFL DM Cascade CMTL Whom GO-MTL MeTaG

50 MSE 5.972±0.295 4.816±0.280 6.538±0.437 3.164±0.137 2.639±0.191 2.082±0.074 1.488±0.040
TDof 32.00±0.00 32.00±0.00 32.00±0.00 32.00±0.00 32.00±0.00 19.00±1.15 17.00±4.03

S 0.645±0.000 0.645±0.000 0.645±0.000 0.645±0.000 0.645±0.00 0.674±0.010 0.685±0.024
100 MSE 3.470±0.133 3.212±0.139 3.216±0.217 2.538±0.143 2.282±0.155 1.482±0.171 1.118±0.042

TDof 32.00±0.00 32.00±0.00 32.00±0.00 32.00±0.00 32.00±0.00 26.50±1.27 11.20±4.24
S 0.645±0.000 0.645±0.000 0.645±0.000 0.645±0.000 0.645±0.00 0.662±0.006 0.796±0.060

150 MSE 2.625±0.074 2.388±0.090 2.137±0.118 1.810±0.074 2.247±0.200 1.046±0.083 0.939±0.030
TDof 30.80±1.23 32.00±0.00 32.00±0.00 32.00±0.00 32.00±0.00 25.20±1.55 19.40±3.78

S 0.648±0.003 0.645±0.000 0.645±0.000 0.645±0.000 0.645±0.00 0.666±0.008 0.751±0.053

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 1: Parameter matrices in synthetic data when the training
size is 150, where (a)-(d) are the true component matrices and pa-
rameter matrix, and (e)-(j) are the estimators Ŵ from different
methods: (a) W∗

1 ; (b) W∗
2 ; (c) W∗

3 ; (d) W∗; (e) MTFL; (f) DM;
(g) Cascade; (h) CMTL; (i) Whom; (j) GO-MTL; (k) MeTaG.

1
mn

∑m
i=1(wi − w∗i )

TXTX(wi − w∗i ). We introduce two
metrics, degree of freedom for tasks (TDof) and metric
S, to measure the performance of task grouping. TDof is
originated from the degree of freedom used in the fea-
ture grouping literatures such as (Bondell and Reich 2008),
and is defined as the number of ‘unequal’ columns in W,
where two columns wi and wj are defined to be ‘equal’,
denoted by wi ' wj , if ‖wi − wj‖2 ≤ ε0 for some
threshold constant ε0. We set ε0 = 0.6 in the experi-
ments, which shows a better discrimination. Although the
task group structures in different levels are different, there
are totally three task groups in the parameter matrix, which
is shown in Figure 1(d). Therefore the closer the estima-
tion of TDof is to 3, the better performance the corre-
sponding method achieves. The second metric S is defined

as S =

∑
i6=j,w∗

i
'w∗

j
I(wi'wj)+

∑
i6=j,w∗

i
6'w∗

j
I(wi 6'wi)∑

i6=j,w∗
i
'w∗

j
1+

∑
i6=j,w∗

i
6'w∗

j
1 , where

I(·) is the indicator function. S is also motivated from the
measurement for feature grouping as introduced in (Yang et
al. 2012). The numerator in S consists of two parts, where
the first and second terms represent the recovery of ‘equal’
columns and ‘unequal’ columns separately. The denomina-
tor is the sum of the exact number of ‘equal’ columns and the
number of ‘unequal’ columns in the true parameter matrix.
Thus, S can provide a measurement for the performance of
task grouping. We vary the number of training samples from
50 to 150 to test the sensitivity of each method. In each ex-
perimental setting, we always generate 100 samples for test-
ing and another 100 samples for parameter validation to se-
lect the hyperparameters in all the methods in comparison,
including the number of groups in CMTL and Whom, the
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Figure 2: (a)-(c) The performance of the MeTaG method by vary-
ing H in the synthetic data when the training size is 150; (d)-(f)
recovered components by the MeTaG method when H = 3.

number of latent tasks in GO-MTL, the number of cascades
in Cascade, and the number of levels in MeTaG, whose can-
didate values are from a set {1, · · · , 10}. We set φ = 1.2
in all the experiments, and choose λ1 of the MeTaG model
from the set [10−6, 10−5, · · · , 103].

Table 1 shows the performance of all the methods over
10 simulations. As shown in Table 1, the task grouping al-
gorithms, i.e. the CMTL, Whom, GO-MTL, and MeTaG
methods, have lower estimation errors compared with oth-
ers. Our MeTaG method has the best performance in terms
of all three performance measures. Figures 1(e)-1(k) show
the estimated Ŵ’s of all the methods in comparison when
the training size is 150. By comparing Figures 1(e)-1(k) with
the ground truth shown in Figure 1(d), the estimation learned
from our MeTaG method has better recovery result. We also
examine the performance of the MeTaG method when the
value of H varies. Figures 2(a)-2(c) shows the change of
MSE, TDof, and S of the MeTaG method by varying H . We
observe that at the beginning when H increases, the perfor-
mance improves in terms of MSE and S. When H reaches
2, the MeTaG method reaches the best S. When H reach-
es 3, which is just the true number of levels, the MeTaG
method has the best MSE. Then the performance becomes
worse for larger H’s. Moreover, Figure 2(b) shows that a
lower H leads to a lower TDof. One reason is the upper lev-
els learned from the MeTaG method tend to have a larger
number of small task groups due to the setting for the regu-
larization parameters λh = λh−1/φ < λh−1 and so whenH
increases, all the levels will contain more task groups, which
leads to a higher TDof. Moreover, we plot the three compo-
nent matrices learned by the MeTaG method when H = 3
in Figures 2(d)-2(f) and by comparing with the ground truth
in Figures 1(a)-1(c), we can see that the recovery is good.
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Figure 3: (a)-(b) Averaged MSE vs. R in the microarray data and
traffic data respectively; (c)-(e) Performance of MeTaG vs. H in
the microarray data, traffic data and handwritten data respectively.

Microarray Data
We report results on microarray data (Wille et al. 2004).
The data is a gene expression dataset with microarray da-
ta related to isoprenoid biosynthesis in plant organism. The
tasks are regression problems which aim to find the cross-
talks from the expression levels of 21 genes in the meval-
onate pathway (data features) to the expression levels of 18
genes in the plastidial pathway (labels). There are 118 sam-
ples and all the data are log-transformed and standardized to
have zero mean and unit variance. We perform 10 random
splits, each of which uses R%, (80-R)%, and 20% samples
for training, testing and validation separately with R as the
training ratio. We varyR to test the performance of the com-
pared methods. Figure 3(a) shows the averaged MSE over
10 random splits under different training ratios. As shown in
Figure 3(a), our MeTaG method stably achieves the best per-
formance under all the settings. Moreover, Figure 3(c) shows
the performance of the MeTaG method whenH changes. We
can observe that the MeTaG method achieves the best per-
formance when H = 2 for all training ratios, which may
imply that the number of the true task levels in the data is 2.

Traffic Data
In this experiment, a traffic data is used to compare different
methods. The samples in this dataset are vehicle counts col-
lected from 272 sensors placed in a highway traffic network,
where one half of the sensors (i.e., 136 sensors) are placed
in the exits of the highway and the others are in the entries
of the highway. The tasks here are regression problems to
find the casual relationships between the vehicle flows from
the entries to the exits, where each exit corresponds to one
task and the information collected in entries is considered
as the data matrix shared by all the tasks. Previous analysis
(Han et al. 2012) has shown that such casual relationships
in highway traffic networks are likely to be grouped. There
are 384 samples for each sensor. Each feature in the data
is normalized to have zero mean and unit variance. The av-
eraged MSE’s over 10 random splits under different training
ratios are reported in Figure 3(b). Again, our MeTaG method

Table 2: The averaged classification accuracy (%) of various meth-
ods on the handwritten letter data.

c/e g/y m/n a/g a/o f/t h/n
MTFL 88.74 72.54 90.16 93.99 92.21 80.95 93.39

DM 88.66 74.41 89.61 93.79 92.39 80.57 92.78
Cascade 88.69 74.96 90.04 93.98 92.39 82.84 94.40
CMTL 88.31 74.22 86.71 93.70 92.39 79.91 94.18
Whom 89.34 73.83 90.84 94.09 92.71 83.17 94.62

GO-MTL 88.69 72.54 89.19 93.47 92.04 80.60 92.97
MeTaG 89.39 74.70 91.12 94.17 92.84 83.69 94.63

performs the best under all the training ratios. Figure 3(d)
shows the performance of MeTaG when H changes. We can
see that its performance improves when H increases. When
H reaches 5 or 6, the improvement in the performance be-
comes small for all the training ratios and this can be viewed
as an indicator for the true number of the levels.

Handwritten Letter Data
In the handwritten letter dataset, there are seven tasks each
of which is a binary classification problem to discriminate
between two letters: c/e, g/y, m/n, a/g, a/o, f/t and h/n. We
use the square loss for all the methods. Each data sam-
ple consists of 128 features representing the pixel values of
the handwritten letter. For each task, there are about 1000
positive samples and 1000 negative samples. We randomly
choose 10%, 20%, and 70% of the data for training, valida-
tion and testing. The averaged classification accuracy over
10 random splits are shown in Table 2. The highlighted num-
bers stand for the best results under the significance t-test
with 95% confidence. From Table 2, we see that the MeTaG
method shows competitive performance in all the tasks. Fig-
ure 3(e) shows the averaged accuracy of all the seven tasks
of MeTaG when H changes. Similar to that in the traffic da-
ta, the performance of the MeTaG method improves when
H increases, and becomes stable when H reaches 5 or 6.

Conclusion and Future Work
In this paper, we proposed a novel MeTaG model to learn
multi-level task groups in multi-task learning. Efficient algo-
rithms and performance bounds are derived for the MeTaG
model. Experimental results conducted on both synthetic
and real-world datasets demonstrate the effectiveness of the
proposed method. At current stage, the number of the levels
needs to be predefined. In future work, we are interested in
learning the number of levels from data automatically.
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